Octyl Methoxycinnamate Modulates Gene Expression and Prevents Cyclobutane Pyrimidine Dimer Formation but not Oxidative DNA Damage in UV-Exposed Human Cell Lines
نویسندگان
چکیده
Octyl methoxycinnamate (OMC) is one of the most widely used sunscreen ingredients. To analyze biological effects of OMC, an in vitro approach was used implying ultraviolet (UV) exposure of two human cell lines, a primary skin fibroblast (GM00498) and a breast cancer (MCF-7) cell lines. End points include cell viability assessment, assay of cyclobutane pyrimidine dimers (CPDs) and oxidated DNA lesions using alkaline elution and lesion-specific enzymes, and gene expression analysis of a panel of 17 DNA damage-responsive genes. We observed that OMC provided protection against CPDs, and the degree of protection correlated with the OMC-mediated reduction in UV dose. No such protection was found with respect to oxidative DNA lesions. Upon UV exposure in the presence of OMC, the gene expression studies showed significant differential changes in some of the genes studied and the expression of p53 protein was also changed. For some genes, the change in expression seemed to be delayed in time by OMC. The experimental approach applied in this study, using a panel of 17 genes in an in vitro cellular system together with genotoxicity assays, may be useful in the initial screening of active ingredients in sunscreens.
منابع مشابه
Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos.
Laboratory exposures of embryos from the sea urchin Strongylocentrotus droebachiensis to ultraviolet B radiation (UV-B, 290-320 nm), equivalent to a depth of 1-3 m in the Gulf of Maine, resulted in significant damage to DNA measured as cyclobutane pyrimidine dimer formation. Cells with DNA damage caused by ultraviolet radiation (UVR, 290-400 nm) and oxidative stress can survive, but are often r...
متن کاملRapid immunoassays for detection of UV-induced cyclobutane pyrimidine dimers in whole bacterial cells.
Immunoassays were developed to measure DNA damage retained by UV-irradiated whole bacterial cells. Active Mycobacterium parafortuitum and Serratia marcescens cells were fixed and incubated with cyclobutane pyrimidine dimer-binding antibodies after being exposed to known UV doses (254 nm). When both fluorescent (Alexa Fluor 488) and radiolabeled ((125)I) secondary antibodies were used as reporte...
متن کاملPhotorepair prevents ultraviolet-induced apoptosis in human cells expressing the marsupial photolyase gene.
Photolyase absorbs blue light and employs the energy to remove UV-induced DNA damage, cyclobutane pyrimidine dimers, or pyrimidine pyrimidone (6-4) lesions. These enzymes have been found in many living organisms ranging from bacteria to aplacental mammals, but their photoreactivation effect, such as survival increase of UV-irradiated cells by light-illumination, has not been identified in place...
متن کاملUV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2.
The tumor suppressor p53 protein has been established as an important factor in modulating the efficiency of global genomic repair. Our recent repair studies in human cells reported that p53 regulates the recruitment of XPC and TFIIH proteins to specific DNA damage sites. Here, we have examined the influence of p53 and damaged-DNA binding complex (DDB2) proteins on the distribution of XPC withi...
متن کاملExpression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts.
We have shown previously that Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in the removal of UV-induced cyclobutane pyrimidine dimers from genomic DNA, but still proficient in the transcription-coupled repair pathway (Ford, J. M., and Hanawalt, P. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8876-8880). We have now utilized monoclonal antibodies specific for cycl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 114 شماره
صفحات -
تاریخ انتشار 2010